Semialgebraic Geometry of Nonnegative Tensor Rank
نویسندگان
چکیده
We study the semialgebraic structure of Dr, the set of nonnegative tensors of nonnegative rank not more than r, and use the results to infer various properties of nonnegative tensor rank. We determine all nonnegative typical ranks for cubical nonnegative tensors and show that the direct sum conjecture is true for nonnegative tensor rank. Under some mild condition (non-defectivity), we show that nonnegative, real, and complex ranks are all equal for a general nonnegative tensor of nonnegative rank strictly less than the complex generic rank. In addition, such nonnegative tensors always have unique nonnegative rank-r decompositions if the real tensor space is r-identifiable. We determine conditions under which a best nonnegative rank-r approximation has a unique nonnegative rank-r decomposition: for r ≤ 3, this is always the case; for general r, this is the case when the best nonnegative rank-r approximation does not lie on the boundary of Dr.
منابع مشابه
The Geometry of Rank-one Tensor Completion
The geometry of the set of restrictions of rank-one tensors to some of their coordinates is studied. This gives insight into the problem of rank-one completion of partial tensors. Particular emphasis is put on the semialgebraic nature of the problem, which arises for real tensors with constraints on the parameters. The algebraic boundary of the completable region is described for tensors parame...
متن کاملTensor Rank, Invariants, Inequalities, and Applications
Though algebraic geometry over C is often used to describe the closure of the tensors of a given size and complex rank, this variety includes tensors of both smaller and larger rank. Here we focus on the n × n × n tensors of rank n over C, which has as a dense subset the orbit of a single tensor under a natural group action. We construct polynomial invariants under this group action whose non-v...
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملLegendre Tensor Decomposition
We present a novel nonnegative tensor decomposition method, called Legendre decomposition, which factorizes an input tensor into a multiplicative combination of parameters. Thanks to the well-developed theory of information geometry, the reconstructed tensor is unique and alwaysminimizes the KL divergence from an input tensor. We empirically show that Legendre decomposition can more accurately ...
متن کاملMinimum volume semialgebraic sets for robust estimation
Motivated by problems of uncertainty propagation and robust estimation we are interested in computing a polynomial sublevel set of fixed degree and minimum volume that contains a given semialgebraic set K. At this level of generality this problem is not tractable, even though it becomes convex e.g. when restricted to nonnegative homogeneous polynomials. Our contribution is to describe and justi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 37 شماره
صفحات -
تاریخ انتشار 2016